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Spinodal decomposition in an order-disorder transition: Effect of interfacial properties
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A model C system is defined by the presence of a nonconserved order parameter coupled to a conserved
concentration. When such a system is quenched from the disordered state into the order-disorder coexistence
region of its phase diagram, two different types of interfaces, an order-order and an order-disorder interface,
form. We discuss how changes in the associated wetting properties of the interfaces modify the morphology of
the growing domains. The ratio between the surface tensions is therefore an important parameter in determin-
ing the universality classes at late times.

PACS numbd(s): 68.10—m, 64.60.Cn

[. INTRODUCTION thickens to a macroscopic dimension. Our numerical simula-
tions show that small changes in the free energy involving
When a system is quenched from the disordered, highenly the interfacial properties dramatically change the do-
temperature, single-phase region of its phase diagram to main morphology. These results suggest that, in some cases,
point inside of the coexistence curve, it orders kinetically. Ainterfacial properties must be considered explicitly when
long-wavelength instability amplifies the fluctuations presenstudying a dynamical universality class. These properties
in the initial conditions, leading to the formation of domains have largely been ignored in previous studies of this system
which grow with time. At late times, this growth is often [5-7].
characterized by a single, time-dependent length scale, the After a temperature quench into the coexistence region, a
average domain sizR(t) [1-4]. The growth of the average model C system is characterized by a stable disordered and
domain size often follows a power law(t)~t", with two degenerate ordered phases. This is in contrast with a
growth exponenh. At late timesR(t) becomes much larger System described by model A or model B, where the disor-
than all the microscopic lengths and the system exhibits scafered minimum of the energy before the quench becomes
ing behavior. For example, the nonequilibrium correlationcompletely unstable after the quench. Thus, the system is
function takes the simple scaling for@(r,t)=G(x), with driven to the equilibrium ordered states with less symmetry
x=r/R(t). Quantities like the scaling functioB(x) and the in model A, or to phase separation in model B. In a model C
growth exponenh are used to C|assify different dynamica| system, the disordered state is still stable after the quench,
systems into a small set of universality classes. It is acceptelfierefore the order parameter alone cannot take the system
that a given universality class is also determined by the symout of that state, unless there are very large fluctuations.
metry of the order parameter, the space dimensionality, andowever, the coupling of the order parameter to a concen-
the relevant hydrodynamic modes and conservation lawfation makes the single phase unstable in the associated
present in the system. At late times, the motion of the relspinodal region, and transitions to the ordered states become
evant defects of the system dominates the kinetics. allowed. Here we consider the simplest case of a model C
When considering topological defects, one wants to idensystem: ascalar order parameter and no hydrodynamic
tify the key properties relevant to the dynamical aspects ofnodes(other than the coupled conserved quaitiBossible
the problem. For a system with a scalar order parameter, it iBhysical realizations of this system might include metal al-
the interface or domain walls separating the ordered phaséd@ys below the tricritical poin{8,9].
that is the characteristic topological defect. Thus, we want to  The paper is structured as follows. In Sec. Il we introduce
determine which interfacial properties could be relevant tdhe model and the details of the simulation. In Sec. IIl we
the characterization of the dynamical behavior of a systemdiscuss the results and we reserve Sec. IV for the conclu-
In this paper, we show that in systems with more than on&lOns.
type of interface, the ratio of surface tensions plays an im-
portant role in determining the system morphology. We con-
sider a model system with a disordered and two degenerate
ordered stable states. A quench takes the system from the We begin with the Ginzburg-Landau free energy:
high-temperature disordered state into the order-disorder co-
existence region. Three types of domains are formed, be- 1 1
longing to th_e two ordered and the dlsorderec_J phase_s. Thus[ ¢, 4= df[gli(V W(r))>+ Eli(V¢(r))2+f(¢,¢) ’
two types of interfacegorder-order and order-disordezxist
and wetting phenomena can play a role. In particular, an @
order-order interface at equilibrium can display a wetting
transition, as the disordered-phase layer at the interfaceheref(¢,) is the bulk free energy density,

Il. MODEL
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1 1, Yod @Nd y4,, depends oty . The surface phase diagram for
f(¢,l//)=§“//2+ul//4+v¢6+ 2 Xn P>+ Yyt —A . the discrete version of the model as described below is
) shown in Fig. 1. Three different regimes are observed:
partial drying: ordered domains of opposite sign prefer to be
Here ¢ is the nonconserved order parameter,is the in contact,y,,<1v.q; (ii) partial wetting an ordered domain
coupled conserved concentrationy,v, x,,7.l,, andl ,are  prefers to be in contact with a disordered one,
system parameters (x,.l,.! ,>0), andA is the chemical  Yod< Y00<27o4; and(iii) complete wettingthere is always
potential related to the concentration. A mean-field analysi disordered wetting layer between ordered domdis
reveals that the system has a line of first-order phase transi,q= ¥o0)- We study the growth and ordering processes for

tions at systems in these three regimes.

_ The dynamics of the phase separation process is described

r=r+2Avyx,=0, (3) by the coupled Langevin equations:

~ 1 ac af(c,y)
=U— =2y, > . —= 27 _2y2

This line ends in a tricritical point at=0, U=0. There is 9 at(cy)
also a line of second-order phase transitions at _y: -T, 24 —I§V2y +é&, (7)
T=T,=U%2v andU<0. We are interested in studying a at ay

guench from the disordered phase>0, u>0) into the ) i i
coexisting region, where the units of energy, concentrationvhere &c and £, are stochastic variables obeying the

and order parameter can be rescaled to give a dimensionled4ctuation-dissipation refation. In this study, we neglect the
free energy densit}o]; thermal noise and set the mobiliti€g=1",=1.

The Langevin equations were solved numerically using
, - 12 |§ Euler's method on a two-dimensional grid of linear size
f(c.y)=y*(1-y*)?+a(c+y*~1)*+ §(VC)2+ g(Vy)z- L =256 with a finite difference scheme. Periodic boundary
(5) conditions were used throughout. The spatial mesh size was
taken to beAx=1.0 and the time mesh size was chosen as
Herey andc are the rescaled order parameter and concenAt=0.01. Further reduction of the mesh sizes gave essen-
tration, respectively. There are three positive arbitrary contially the same results. Our initial distribution gfs was
stants:e, I, andl,. We fix =4 and select the unit of specified by a random uniform distribution in the range
length such that.l,=1, but we allow for variations ir, . (—0.1,0.1), while the initial distribution af’s, for a particu-
The local free energy has three coexisting minima in thdar mean concentration,, was specified by a similar ran-
(c,y) plane located at (1,0)disordered phageand (0;+1)  dom distribution in the rangecf—0.1,cq+0.1). We probed
(ordered phageThus there are three interfaces: two equiva-different system sizes and found that a dize256 provides
lent interfaces between the ordered and disordered phasgeod enough self-averaging in the correlation functions for
and one interface between ordered domains of opposite sigour purposes. For this system size, to obtain reasonable sta-
The relationship between the corresponding surface tensionistics, 15 independent runs were performed for each of the
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cases specified below. For systems in the wetting regime, the
equations were iterated te= 1500 forcy=1/3 andt=2000

for co=2/3. For systems in the partial wetting and partial
drying regimes, the mean concentration was kept at
co=1/3 and the equations were iterated tte 3000 and
t=5000, respectively. For each case we computed the non-
equilibrium pair correlation function for both the conserved
variablec and the nonconserved order paramgtedefined

as  Cq(r,t)=([c(0t)—col[c(r,t)—col) and Cy(r,t)
=(y(0t)y(r,t)), where the brackets indicate an ensemble
average. We also computed their circular average and the
typical length scale®R.(t), associated with domains af,

and Ry(t), associated with domains of the variabje
R.(t) is defined as the smallest value of for which
Cc(r,t)=0 at timet; R (t) is defined as the value of at
time t for which Cy(r,t) takes one-half of its value at the
origin in the scaling regime.

Ill. RESULTS AND DISCUSSION

A. Morphology

In model B systems, it is assumed that the morphology of
the growing domains depends only on the mean concentra- FIG. 2. Typical configurations for a model C system quenched
tion. Specifically, interconnected domains are observed fointo the order-disorder coexistence region in the complete wetting
critical quenches and isolated droplets are observed for off€gime. Three different times are shown for the following mean
critical ones. For a model C system, on the other hand, it i§oncentrations{a) c,=1/3 (normalized concentration=—1/3),
necessary to know whether the minority phase is ordered d) Co=2/3 (x=+1/3). The black regions correspond to the disor-
disordered, as well as the wetting properties of the interfacegered phase, the white and gray regions correspond to ordered do-
Forc,>1/2, the minority phase is the ordered one and formdnains with positive and negative order parameter, respectively.
isolated droplets. Inside each droplet complete order is ob

. . - instead of a disordered one. The disordered domains no
tf';uned, the order parameter take; either a pos!uve ora negf’o’nger surround the ordered domains and, instead, adopt
tive value, and the order-order interfaces rapidly disappe ! '

. 2 atEompact shapes, as shown in Figg)l3Nevertheless, the dis-
from the system. An isolated domain is not affected .by theg;dered domains tend to be located at the order-order inter-
~Tace instead of being fully surrounded by one single ordered
the degeneracy of the ordered state does not play a quahta—omain_ The intermediate case, for €§<0.79, corre-

tively important rqle in the grovvth Process. For the Same, ponds to the partial wetting regime, and is illustrated in Fig.
reason, changes in the wetting regime are not dramatic. (b)

completely different situation arises when the minority phase
is the disordered onec{<<1/2). In this case an ordered do-
main can grow to an infinite size, percolating through the
system. Now, long-range order is never reached in a finite Clearly, as shown in Figs. 2 and 3, changes in interfacial
time and, thus, order-order interfaces can remain in the sysgroperties lead to changes in morphology. The question then
tem even at late times. The presence of these interfaces in tlagises: how are these changes reflected in the correlation
system depends on the interfacial wetting properties. function and how do they affect the universality classes? To
Next, we study the effect of varying botly andl, on the  answer these questions we have examined the characteristic
domain morphology. The complete wetting regime occurggrowth exponenh and the correlation functio@(r,t).
for 1,>0.79: two ordered domains with a different sign in  In the model C system consideregl,ijs a nonconserved
the order parameter are separated by a macroscopic disayuantity that evolves faster than the conserved concentration.
dered wetting layer. The disordered domains tend to surThus for late times, growth is driven by diffusion of the
round the ordered domains and percolate through the systempnserved variable and the order parameter becomes slaved
see Fig. 2. This figure shows two different off-critical to the concentration. In fact, we observe numerically that at
quenches, foc,=1/3 andcy=2/3, both withl,=1. Figure late times bottR(t) andR.(t) are consistent with a growth
2(a) (cy=1/3) shows that, in the complete wetting regime, law t" with n=1/3 for all cases.
the disordered-phase morphology corresponds to elongated Regarding the correlation functions, we center our atten-
stripes(with a few shrinking droplejsinstead of the isolated tion on C.(r,t), for which the statistics are better due to
droplets that would correspond to a standard model B witltreduced finite-size effects. Also, this quantity allows a direct
an equivalent concentration. However, a morphology similacomparison with the correlation function of a model B sys-
to that of model B is recovered when the minority phase igem. For all the runs, the data are consistent with the scaling
the ordered one, as shown in Fighp hypothesis:C(r,t)=G.(r/R(t)). Superposition of the data
The partial drying regime occurs fby<<0.60: an ordered at different times is certainly excellent for the two cases in
domain prefers to be in contact with another ordered domaithe complete wetting regime witly= 1.0 (shown in Fig. 2,

B. Correlation functions
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FIG. 4. Concentration-concentration correlation functions near

FIG. 3'. Typical confi_gurations fqr two mo_del C systems the scaling regime. The solid line corresponds to a model C system
quenched into the order-disorder coexistence region with mean colyzi *normalized concentratioy=— 1/3 [c,=1/3, Fig. 2d)], the
centrationco=1/3. The systems are {@) the partial drying regime dotted line corresponds to the same system with +1/3
(ly=0.5), (b) the partial wetting regimel{=0.7). The black re- é

. d he disordered ph he whi g co=2/3, Fig. Zb)], and the dashed line corresponds to a model B
gions correspond to the disordered phase, the white and gray r ystem withy= = 1/3. The inset shows the first minimum and the

gions correspond to ordgred domains with positive and negatiV%rror bars, which are the typical deviations of the data after an
order parameter, respectively. average over 15 runs.

but it worsens slightly as, is reduced through the partial
wetting and partial drying regime@ig. 3. The possibility ~ variance ofG(x,r/R(t)) with the sign ofy to hold in model
that scaling breaks down in these last two cases cannot Ke due to the differences in morphology, as depicted in Fig. 2
ultimately discarded. for the wetting regime and normalized concentrations
At late times the nonconserved order paramatebe- x=—1/3 (co=1/3) andy=+1/3 (co=2/3).
comes slaved to the concentration. It is natural to suppose Although correlation functions are very insensitive to
that it can be eliminated through an adiabatic approximatiornorphology [10,11], the differences between the scaling
(aylt=0) in the scaling regime. Also, previous simulations functions of the two quenches and of a model B system can
of a model C system showed scaling functions consisterf€¢ quantified. Figure 4 shows the corresponding
with the model B universality clagd]. Here we try to quan- concentration-concentration correlation functions. These
tify the effects of the morphology on the correlation func- functions have been rescaled by the theoretical value in the
tions and we show that model B and model C actuallyscaling limit: G¢(0)=co(1—cp). The simulations have not
present different scaling functions. reached this value because the width of the interfages
In the presence of a conserved concentration, the correl@lthough small, is still not completely negligible compared to
tion function depends on the mean concentratign If the  the typical lengtiR(t). By construction, all scaling functions
concentrations of the two phases arg and c,, we can agree atr=0 andr/R(t)=1, and forr much larger that
define a normalized concentration: R(t), they rapidly tend to zero. Thus, the major differences
are expected near the first minimum. This region is amplified
_ 2Co—(CatCp) in the inset, where the error bars correspondttd typical
N Cp—C, (8) deviation. The real statistical error is the typical deviation
divided by (nr—1), wherenr is the number of runs (15 in
so that the scaled correlation function is a function of bothour casg At least forc,=1/3 (y= — 1/3), the model C scal-
x and x=r/R(t); i.e., G(x,X). Two systems in the same ing function displays differences from the model B scaling
universality class with the same value pfshould display function (obtained for y=*1/3). Naturally, for c,=2/3
the same scaling function for any value xaf The function (y=+1/3) the differences with model B are smaller, but
G(x.,X) is universal, and its dependence gnas well as on even in this case the effective repulsion between opposite-
X, is shared by the whole universality class. In order to demsigned ordered domains affects the correlation function: this
onstrate that two systems correspond to different universalityepulsion forbids coalescence between opposite domains,
classes, it is enough to show that their scaling functions havevhich are slightly less circular than in model B, and thus it
a different dependence jp. For model B and any local free reduces the depth of the minimum in the correlation func-
energy with two minima, the scaling function does not de-tion. Only in the limitc,— 1 are the correlation functions of
pend on the sign of. However, we do not expect this in- model B and model C expected to overlap rigorously. To

X
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further assess the existence of these differences in the corrslow process. Thus, it is very difficult to unequivocally dif-
lation functions, the data have been improvedhaydening ferentiate between a marginal and a relevant parameter
the profilec(r,t), i.e., by taking the integer part e{r,t) (0  through a simulatiof13].

or 1) before calculating the correlation functions. As pointed

out by Shinozaki and Oongl2], the correlation function IV. CONCLUSIONS

based on the hardened data becomes time independent an : .
the resultant universal function is the asymptotic form. The dwe have studied the effect of wetting between bulk

hardenedcorrelation functions overlap with those of Fig. 4 phases during phase_ separat!on. The functional dependence
R ' . of the scaled correlation functic®(y,x) on the normalized
for r>R(t)/2, indicating that near the first minimum, the concentrationy for any value of=r/R(t) should be shared
correlation functions are not affected by the finite ratio X y o .
. . . by all the members of the same universality class. We have
e/R(t). In other words, the asymptotic correlation functions . ) oS
. shown that the concentration correlation function in a model
for model B and model C are different. C system has a different dependence than that in a model
Since the morphology of the disordered domains in th y Wt dep

partial drying regime is completely different from that in theeﬁsgt?;i”}éygr%%zr’vzl:: cr)r;odcerllacr:] sgsstzrgwéotrr:j?nco'[(r)eltitéon
complete wetting regime, the corresponding scaling funCValue of the ratio between SL)J(rface tgnsions and%hus is not
tions must be different, indicating a change in the universal- ’

ity class. Thud, (or the ratio between surface tensipis uniquely determined by andx. Thus, for a model C system

not an irrelevant parameter in the renormalization grour;[he ratio between surface tensions is not an irrelevant param-

sense. The parametéy is either relevant or marginal. If eter, but rather plays an important role in determining the
) : . : : domain morphology and the scaling function. This behavior

there are two dlff_erent universality class@esie for_ the ©OM" " should be C(I)Dmmo?]yto systems WitrgJ three or more asymmet-

plete) wetting regime and the other for the partial drying e coexisting minima. Experimentally, this could be tested

gime) and the system always flows to one of these, thga . . . . '

relevant. If, on the other hand, the system does not flow ™ for instance, phase-separating three component systems.
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