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A model C system is defined by the presence of a nonconserved order parameter coupled to a conserved
concentration. When such a system is quenched from the disordered state into the order-disorder coexistence
region of its phase diagram, two different types of interfaces, an order-order and an order-disorder interface,
form. We discuss how changes in the associated wetting properties of the interfaces modify the morphology of
the growing domains. The ratio between the surface tensions is therefore an important parameter in determin-
ing the universality classes at late times.

PACS number~s!: 68.10.2m, 64.60.Cn

I. INTRODUCTION

When a system is quenched from the disordered, high-
temperature, single-phase region of its phase diagram to a
point inside of the coexistence curve, it orders kinetically. A
long-wavelength instability amplifies the fluctuations present
in the initial conditions, leading to the formation of domains
which grow with time. At late times, this growth is often
characterized by a single, time-dependent length scale, the
average domain sizeR(t) @1–4#. The growth of the average
domain size often follows a power lawR(t);tn, with
growth exponentn. At late timesR(t) becomes much larger
than all the microscopic lengths and the system exhibits scal-
ing behavior. For example, the nonequilibrium correlation
function takes the simple scaling formC(r ,t)5G(x), with
x5r /R(t). Quantities like the scaling functionG(x) and the
growth exponentn are used to classify different dynamical
systems into a small set of universality classes. It is accepted
that a given universality class is also determined by the sym-
metry of the order parameter, the space dimensionality, and
the relevant hydrodynamic modes and conservation laws
present in the system. At late times, the motion of the rel-
evant defects of the system dominates the kinetics.

When considering topological defects, one wants to iden-
tify the key properties relevant to the dynamical aspects of
the problem. For a system with a scalar order parameter, it is
the interface or domain walls separating the ordered phases
that is the characteristic topological defect. Thus, we want to
determine which interfacial properties could be relevant to
the characterization of the dynamical behavior of a system.
In this paper, we show that in systems with more than one
type of interface, the ratio of surface tensions plays an im-
portant role in determining the system morphology. We con-
sider a model system with a disordered and two degenerate
ordered stable states. A quench takes the system from the
high-temperature disordered state into the order-disorder co-
existence region. Three types of domains are formed, be-
longing to the two ordered and the disordered phases. Thus
two types of interfaces~order-order and order-disorder! exist
and wetting phenomena can play a role. In particular, an
order-order interface at equilibrium can display a wetting
transition, as the disordered-phase layer at the interface

thickens to a macroscopic dimension. Our numerical simula-
tions show that small changes in the free energy involving
only the interfacial properties dramatically change the do-
main morphology. These results suggest that, in some cases,
interfacial properties must be considered explicitly when
studying a dynamical universality class. These properties
have largely been ignored in previous studies of this system
@5–7#.

After a temperature quench into the coexistence region, a
model C system is characterized by a stable disordered and
two degenerate ordered phases. This is in contrast with a
system described by model A or model B, where the disor-
dered minimum of the energy before the quench becomes
completely unstable after the quench. Thus, the system is
driven to the equilibrium ordered states with less symmetry
in model A, or to phase separation in model B. In a model C
system, the disordered state is still stable after the quench,
therefore the order parameter alone cannot take the system
out of that state, unless there are very large fluctuations.
However, the coupling of the order parameter to a concen-
tration makes the single phase unstable in the associated
spinodal region, and transitions to the ordered states become
allowed. Here we consider the simplest case of a model C
system: ascalar order parameter and no hydrodynamic
modes~other than the coupled conserved quantity!. Possible
physical realizations of this system might include metal al-
loys below the tricritical point@8,9#.

The paper is structured as follows. In Sec. II we introduce
the model and the details of the simulation. In Sec. III we
discuss the results and we reserve Sec. IV for the conclu-
sions.

II. MODEL

We begin with the Ginzburg-Landau free energy:
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where f (f,c) is the bulk free energy density,
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Here c is the nonconserved order parameter,f is the
coupled conserved concentration,r ,u,v,xn ,g,l c , andlf are
system parameters (v,xn ,l c ,lf.0), andD is the chemical
potential related to the concentration. A mean-field analysis
reveals that the system has a line of first-order phase transi-
tions at

r̃ [r12Dgxn50, ~3!

ũ[u2
1

2
g2xn.0. ~4!

This line ends in a tricritical point atr̃50, ũ50. There is
also a line of second-order phase transitions at
r̃5 r̃ 0[ũ 2/2v and ũ,0. We are interested in studying a
quench from the disordered phase (r̃ .0, ũ.0) into the
coexisting region, where the units of energy, concentration,
and order parameter can be rescaled to give a dimensionless
free energy density@9#:
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Here y andc are the rescaled order parameter and concen-
tration, respectively. There are three positive arbitrary con-
stants:a, l c , and l y . We fix a54 and select the unit of
length such thatl cl y51, but we allow for variations inl y .
The local free energy has three coexisting minima in the
(c,y) plane located at (1,0)~disordered phase! and (0,61)
~ordered phase!. Thus there are three interfaces: two equiva-
lent interfaces between the ordered and disordered phases
and one interface between ordered domains of opposite sign.
The relationship between the corresponding surface tensions,

god andgoo , depends onl y . The surface phase diagram for
the discrete version of the model as described below is
shown in Fig. 1. Three different regimes are observed:~i!
partial drying: ordered domains of opposite sign prefer to be
in contact,goo,god ; ~ii ! partial wetting: an ordered domain
prefers to be in contact with a disordered one,
god,goo,2god ; and~iii ! complete wetting: there is always
a disordered wetting layer between ordered domains~2
god<goo). We study the growth and ordering processes for
systems in these three regimes.

The dynamics of the phase separation process is described
by the coupled Langevin equations:

]c
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where jc and jy are stochastic variables obeying the
fluctuation-dissipation relation. In this study, we neglect the
thermal noise and set the mobilitiesGc5Gy51.

The Langevin equations were solved numerically using
Euler’s method on a two-dimensional grid of linear size
L5256 with a finite difference scheme. Periodic boundary
conditions were used throughout. The spatial mesh size was
taken to beDx51.0 and the time mesh size was chosen as
Dt50.01. Further reduction of the mesh sizes gave essen-
tially the same results. Our initial distribution ofy’s was
specified by a random uniform distribution in the range
(20.1,0.1), while the initial distribution ofc’s, for a particu-
lar mean concentrationc0 , was specified by a similar ran-
dom distribution in the range (c020.1,c010.1). We probed
different system sizes and found that a sizeL5256 provides
good enough self-averaging in the correlation functions for
our purposes. For this system size, to obtain reasonable sta-
tistics, 15 independent runs were performed for each of the

FIG. 1. Surface tension of interfaces in a
model C system as a function of the parameter
l y . A surface layer of the disordered phase may
exist at the interface between two ordered phases.
Three different regimes are possible:~i! partial
drying: goo,god ; ~ii ! partial wetting:
god,goo,2god ; and ~iii ! complete wetting:
2god<goo .
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cases specified below. For systems in the wetting regime, the
equations were iterated tot51500 forc051/3 andt52000
for c052/3. For systems in the partial wetting and partial
drying regimes, the mean concentration was kept at
c051/3 and the equations were iterated tot53000 and
t55000, respectively. For each case we computed the non-
equilibrium pair correlation function for both the conserved
variablec and the nonconserved order parametery, defined
as Cc(r ,t)5^@c(0,t)2c0#@c(r ,t)2c0#& and Cy(r ,t)
5^y(0,t)y(r ,t)&, where the brackets indicate an ensemble
average. We also computed their circular average and the
typical length scalesRc(t), associated with domains ofc,
and Ry(t), associated with domains of the variabley.
Rc(t) is defined as the smallest value ofr for which
Cc(r ,t)50 at time t; Ry(t) is defined as the value ofr at
time t for which Cy(r ,t) takes one-half of its value at the
origin in the scaling regime.

III. RESULTS AND DISCUSSION

A. Morphology

In model B systems, it is assumed that the morphology of
the growing domains depends only on the mean concentra-
tion. Specifically, interconnected domains are observed for
critical quenches and isolated droplets are observed for off-
critical ones. For a model C system, on the other hand, it is
necessary to know whether the minority phase is ordered or
disordered, as well as the wetting properties of the interfaces.
For c0.1/2, the minority phase is the ordered one and forms
isolated droplets. Inside each droplet complete order is ob-
tained, the order parameter takes either a positive or a nega-
tive value, and the order-order interfaces rapidly disappear
from the system. An isolated domain is not affected by the
value of the order parameter of other domains. In this case
the degeneracy of the ordered state does not play a qualita-
tively important role in the growth process. For the same
reason, changes in the wetting regime are not dramatic. A
completely different situation arises when the minority phase
is the disordered one (c0,1/2). In this case an ordered do-
main can grow to an infinite size, percolating through the
system. Now, long-range order is never reached in a finite
time and, thus, order-order interfaces can remain in the sys-
tem even at late times. The presence of these interfaces in the
system depends on the interfacial wetting properties.

Next, we study the effect of varying bothc0 andl y on the
domain morphology. The complete wetting regime occurs
for l y.0.79: two ordered domains with a different sign in
the order parameter are separated by a macroscopic disor-
dered wetting layer. The disordered domains tend to sur-
round the ordered domains and percolate through the system,
see Fig. 2. This figure shows two different off-critical
quenches, forc051/3 andc052/3, both withl y51. Figure
2~a! (c051/3) shows that, in the complete wetting regime,
the disordered-phase morphology corresponds to elongated
stripes~with a few shrinking droplets! instead of the isolated
droplets that would correspond to a standard model B with
an equivalent concentration. However, a morphology similar
to that of model B is recovered when the minority phase is
the ordered one, as shown in Fig. 2~b!.

The partial drying regime occurs forl y,0.60: an ordered
domain prefers to be in contact with another ordered domain

instead of a disordered one. The disordered domains no
longer surround the ordered domains and, instead, adopt
compact shapes, as shown in Fig. 3~a!. Nevertheless, the dis-
ordered domains tend to be located at the order-order inter-
face instead of being fully surrounded by one single ordered
domain. The intermediate case, for 0.6, l y,0.79, corre-
sponds to the partial wetting regime, and is illustrated in Fig.
3~b!.

B. Correlation functions

Clearly, as shown in Figs. 2 and 3, changes in interfacial
properties lead to changes in morphology. The question then
arises: how are these changes reflected in the correlation
function and how do they affect the universality classes? To
answer these questions we have examined the characteristic
growth exponentn and the correlation functionCc(r ,t).

In the model C system considered,y is a nonconserved
quantity that evolves faster than the conserved concentration.
Thus for late times, growth is driven by diffusion of the
conserved variable and the order parameter becomes slaved
to the concentration. In fact, we observe numerically that at
late times bothRy(t) andRc(t) are consistent with a growth
law tn with n51/3 for all cases.

Regarding the correlation functions, we center our atten-
tion on Cc(r ,t), for which the statistics are better due to
reduced finite-size effects. Also, this quantity allows a direct
comparison with the correlation function of a model B sys-
tem. For all the runs, the data are consistent with the scaling
hypothesis:Cc(r ,t)5Gc„r /R(t)…. Superposition of the data
at different times is certainly excellent for the two cases in
the complete wetting regime withl y51.0 ~shown in Fig. 2!,

FIG. 2. Typical configurations for a model C system quenched
into the order-disorder coexistence region in the complete wetting
regime. Three different times are shown for the following mean
concentrations:~a! c051/3 ~normalized concentrationx521/3),
~b! c052/3 (x511/3). The black regions correspond to the disor-
dered phase, the white and gray regions correspond to ordered do-
mains with positive and negative order parameter, respectively.
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but it worsens slightly asl y is reduced through the partial
wetting and partial drying regimes~Fig. 3!. The possibility
that scaling breaks down in these last two cases cannot be
ultimately discarded.

At late times the nonconserved order parametery be-
comes slaved to the concentration. It is natural to suppose
that it can be eliminated through an adiabatic approximation
(]y/]t'0) in the scaling regime. Also, previous simulations
of a model C system showed scaling functions consistent
with the model B universality class@7#. Here we try to quan-
tify the effects of the morphology on the correlation func-
tions and we show that model B and model C actually
present different scaling functions.

In the presence of a conserved concentration, the correla-
tion function depends on the mean concentrationc0 . If the
concentrations of the two phases areca and cb , we can
define a normalized concentration:

x5
2c02~ca1cb!

cb2ca
, ~8!

so that the scaled correlation function is a function of both
x and x5r /R(t); i.e., G(x,x). Two systems in the same
universality class with the same value ofx should display
the same scaling function for any value ofx. The function
G(x,x) is universal, and its dependence onx, as well as on
x, is shared by the whole universality class. In order to dem-
onstrate that two systems correspond to different universality
classes, it is enough to show that their scaling functions have
a different dependence inx. For model B and any local free
energy with two minima, the scaling function does not de-
pend on the sign ofx. However, we do not expect this in-

variance ofG„x,r /R(t)… with the sign ofx to hold in model
C due to the differences in morphology, as depicted in Fig. 2
for the wetting regime and normalized concentrations
x521/3 (c051/3) andx511/3 (c052/3).

Although correlation functions are very insensitive to
morphology @10,11#, the differences between the scaling
functions of the two quenches and of a model B system can
be quantified. Figure 4 shows the corresponding
concentration-concentration correlation functions. These
functions have been rescaled by the theoretical value in the
scaling limit:Gc(0)5c0(12c0). The simulations have not
reached this value because the width of the interfacese,
although small, is still not completely negligible compared to
the typical lengthR(t). By construction, all scaling functions
agree atr50 and r /R(t)51, and for r much larger that
R(t), they rapidly tend to zero. Thus, the major differences
are expected near the first minimum. This region is amplified
in the inset, where the error bars correspond to61 typical
deviation. The real statistical error is the typical deviation
divided byA(nr21), wherenr is the number of runs (15 in
our case!. At least forc051/3 (x521/3), the model C scal-
ing function displays differences from the model B scaling
function ~obtained for x561/3). Naturally, for c052/3
(x511/3) the differences with model B are smaller, but
even in this case the effective repulsion between opposite-
signed ordered domains affects the correlation function: this
repulsion forbids coalescence between opposite domains,
which are slightly less circular than in model B, and thus it
reduces the depth of the minimum in the correlation func-
tion. Only in the limitc0→1 are the correlation functions of
model B and model C expected to overlap rigorously. To

FIG. 3. Typical configurations for two model C systems
quenched into the order-disorder coexistence region with mean con-
centrationc051/3. The systems are in~a! the partial drying regime
( l y50.5), ~b! the partial wetting regime (l y50.7). The black re-
gions correspond to the disordered phase, the white and gray re-
gions correspond to ordered domains with positive and negative
order parameter, respectively.

FIG. 4. Concentration-concentration correlation functions near
the scaling regime. The solid line corresponds to a model C system
with normalized concentrationx521/3 @c051/3, Fig. 2~a!#, the
dotted line corresponds to the same system withx511/3
@c052/3, Fig. 2~b!#, and the dashed line corresponds to a model B
system withx561/3. The inset shows the first minimum and the
error bars, which are the typical deviations of the data after an
average over 15 runs.
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further assess the existence of these differences in the corre-
lation functions, the data have been improved byhardening
the profilec(r ,t), i.e., by taking the integer part ofc(r ,t) ~0
or 1! before calculating the correlation functions. As pointed
out by Shinozaki and Oono@12#, the correlation function
based on the hardened data becomes time independent and
the resultant universal function is the asymptotic form. The
hardenedcorrelation functions overlap with those of Fig. 4
for r.R(t)/2, indicating that near the first minimum, the
correlation functions are not affected by the finite ratio
e/R(t). In other words, the asymptotic correlation functions
for model B and model C are different.

Since the morphology of the disordered domains in the
partial drying regime is completely different from that in the
complete wetting regime, the corresponding scaling func-
tions must be different, indicating a change in the universal-
ity class. Thusl y ~or the ratio between surface tensions! is
not an irrelevant parameter in the renormalization group
sense. The parameterl y is either relevant or marginal. If
there are two different universality classes~one for the com-
plete wetting regime and the other for the partial drying re-
gime! and the system always flows to one of these, thenl y is
relevant. If, on the other hand, the system does not flow to
any of these points,l y is marginal. In the wetting regime the
system has reached its asymptotic behavior. In the drying
regime, although self-similarity is very clear in the figures
and scaling is good, this flow can unfortunately be a very

slow process. Thus, it is very difficult to unequivocally dif-
ferentiate between a marginal and a relevant parameter
through a simulation@13#.

IV. CONCLUSIONS

We have studied the effect of wetting between bulk
phases during phase separation. The functional dependence
of the scaled correlation functionG(x,x) on the normalized
concentrationx for any value ofx5r /R(t) should be shared
by all the members of the same universality class. We have
shown that the concentration correlation function in a model
C system has a differentx dependence than that in a model
B system. Moreover, for a model C system, the correlation
function for a fixed value ofx changes according to the
value of the ratio between surface tensions, and thus is not
uniquely determined byx andx. Thus, for a model C system
the ratio between surface tensions is not an irrelevant param-
eter, but rather plays an important role in determining the
domain morphology and the scaling function. This behavior
should be common to systems with three or more asymmet-
ric coexisting minima. Experimentally, this could be tested
in, for instance, phase-separating three component systems.

ACKNOWLEDGMENTS

A.S.M. acknowledges financial support from Grant No.
PB91-0090 of DGICyT, Spain.

@1# J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Tran-
sitions and Critical Phenomena, edited by C. Domb and J. L.
Lebowitz ~Academic, New York, 1983!, Vol. 8.

@2# H. Furukawa, Adv. Phys.34, 703 ~1985!.
@3# K. Binder, Rep. Prog. Phys.50, 783 ~1987!.
@4# A. J. Bray, Adv. Phys.43, 357 ~1994!.
@5# P. S. Sahni and J. D. Gunton, Phys. Rev. Lett.45, 369 ~1980!.
@6# T. Ohta, K. Kawasaki, A. Sato, and Y. Enomoto, Phys. Lett. A

126, 93 ~1987!; Y. Enomoto and T. Watanabe,ibid. 133, 497
~1988!; T. Ohta, Y. Enomoto, K. Kawasaki, and A. Sato, in
Dynamics of Ordering Processes in Condensed Matter~Ple-
num, New York, 1988!, p. 127.

@7# A. Chakrabarti, J. B. Collins, and J. D. Gunton, Phys. Rev. B

38, 6894~1988!.
@8# S. M. Allen and J. C. Cahn, Acta Metall.24, 425 ~1976!.
@9# C. Sagui, A.M. Somoza, and R.C. Desai, Phys. Rev. E50,

4865 ~1994!.
@10# R. Toral, A. Chakrabarti, and J. D. Gunton, Phys. Rev. B39,

901 ~1989!.
@11# P. Fratzl, J.L. Lebowitz, O. Penrose, and J. Amar, Phys. Rev.

B 44, 4794~1991!.
@12# A. Shinozaki and Y. Oono, Phys. Rev. Lett.66, 173 ~1991!;

Phys. Rev. E48, 2622~1993!.
@13# The partial wetting pictures seem to indicate that the system is

not flowing to any of the other two cases~for example, the
ratio between the lengths of the two kinds of interfaces re-
mains approximately constant!.

53 5105SPINODAL DECOMPOSITION IN AN ORDER-DISORDER . . .


